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Abstract

In this work, we update the constraints on tree level FCNC cou-

plings in the framework of a theory with n isosinglet vector-like down

quarks. In this context, we emphasize the sensitivity of the B !
J= KS CP asymmetry to the presence of new vector-like down quarks.

This CP asymmetry, together with the rare decays B ! Xs;dl�l and
K ! ���� are the best options to further constrain the FCNC tree

level couplings or even to point out, in the near future, the possible

presence of vector-like quarks in the low energy spectrum, as suggested

by GUT theories or models of large extra dimensions at the TeV scale.



1 Introduction

The study of avor changing neutral currents (FCNC) in particle physics
phenomenology has played a key role in the advance of high energy physics
in the past decades. Already in the early seventies the non-observation of
FCNC was used to predict the existence of the charm quark through the GIM
mechanism [1] well before its direct experimental discovery. Subsequently,
a precise prediction of its mass was made from FCNC kaon processes [2].
Later on, the discovery of the bottom quark and the measure of the B{ �B
mass di�erence indicated the presence of a heavy top quark. Due to this
GIM mechanism, FCNC in the SM arise only at higher loop level and are
suppressed by powers of light quark masses and small mixing angles. This
strong suppression make FCNC phenomena a privileged ground to search for
signs of new physics beyond the SM. In many extensions of the SM there
is no analog of the GIM mechanism to protect FCNC processes and hence
potentially large new physics contributions can be expected. For instance,
a minimal supersymmetric extension of the SM with generic soft breaking
terms gives rise to dangerously large contributions to FCNC and CP violating
observables through loop contributions with the supersymmetric particles
running in the loop [3]. Even more challenging (or perhaps more dangerous)
than these loop induced FCNCs is the inclusion of tree level FCNC couplings.

Indeed, the presence of tree level FCNC is phenomenologically, a very in-
teresting possibility. A minimal extension of the SM with the only addition of
an extra isosinglet down quark in a vector like representation of the SM gauge
group induces FCNC couplings in the Z and neutral Higgs boson couplings.
Some, more realistic models, include at least one vector-like quark per gen-
eration. These models naturally arise, for instance, as the low-energy limit
of an E6 grand uni�ed theory [4]. Moreover, vector-like quarks can appear in
models of large extra dimensions. The existence of extra spatial dimensions
of the TeV size implies the existence of towers of Kaluza Klein modes for
the particles that propagate in the new (extra) dimensions. Therefore, if
some SM fermion propagates in the extra dimensions, for each of these chiral
quarks and leptons there is a tower of vector-like fermions whose separation
is of order 1=R, being R the radius of the extra dimensions [5, 6]. From a
more phenomenological point of view, models with isosinglet quarks provide
the simplest self-consistent framework to study deviations of 3� 3 unitarity
of the CKM matrix as well as avor changing neutral currents at tree level.
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Of course, these FCNC couplings are severely restricted by the low energy
results on the di�erent FCNC processes. Nevertheless, it is well known that
even ful�lling these strong constraints these couplings can have large e�ects
on B factory experiments on CP violation [8, 10, 11]. In a recent paper [11],
we showed that the possible mismatch between the SM expectations and the
measured value for the CP asymmetry in the B ! J= Ks decay can be
easily explained in a model with an additional vector like down quark. In
this paper, we complete the previous analysis and generalize it to the case
where a tower of vector-like down quarks (VLdQ) is present. In �rst place, we
update the strong low-energy constraints on the tree-level FCNC couplings
and then we concentrate on the CP violation observables in the B factories
as the most eÆcient observables to �nd or at least constrain these tree level
FCNC couplings. Finally, we compare the simplest case with a single VLdQ
with models with several vector-like down quarks.

2 FCNC in the presence of isosinglet quarks

As explained in the introduction, vector-like fermions appear in di�erent
extensions of the SM, as for instance E6 GUT models or, remarkably enough,
theories with large extra dimensions on the TeV scale. All these models have
several new vector like fermions that mix with the SM fermions and can have
important e�ects on the low energy FCNC phenomenology. In this paper,
we will study FCNC processes with external down quarks, and so we will be
mainly interested in models with isosinglet vector-like down quarks (VLdQ).
Note that the presence of extra vector-like down (up) quarks generates FCNC
in the down (up) couplings to the Z and H. In view of these new possibilities
of having VLdQs in the low energy spectrum, and especially, to reach a rough
understanding of FCNC e�ects in models with large extra dimensions [5, 6],
we present our bounds in a general framework with n additional VLdQs. A
general analysis with both up and down isosinglets and isodoublets will be
presented elsewhere [7].

From the low energy point of view, the model we analyze here has been
thoroughly described in Ref. [8, 9]. Its main feature is that the additional
VLdQs mix with the three ordinary quarks and consequently the mass matrix
in the down sector is now (3 + n)� (3 + n). This matrix is diagonalized by
two (3 + n) � (3 + n) mixing matrices and only the left-handed rotation is
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observable giving rise to the CKM matrix. As we have already announced
in the introduction, the �ngerprint of this model is that it allows tree level
FCNC in the Z and H vertices. To see how these FCNC couplings appear,
we can work in the basis where the up quark mass matrix is diagonal. Here
the down quark mass matrix is diagonalized by a (3 + n) � (3 + n) unitary
matrix, V��. In this model charged current couplings are unchanged except
that VCKM is now the 3�(3+n) upper submatrix of V , and at low energies a
non-unitary 3�3 mixing matrix appears at tree level. However, the mixing of
doublet and singlet weak eigenstates modi�es the neutral current couplings
that in terms of avor eigenstates will be V y �Diag.(1; 1; 1; 0) � V 6= I4�4. So,
neutral current interactions are given by,

LZ = g
2 cos �W

h
�uLi � uLi � �dL� U�� � dL� �
2 sin2 �W J�em

i
Z�;

LH = g
2MW

h
�uLi mu

i uLi � �dL� U�� md
� dL�

i
U�� =

P3
i=1 V

�
i�Vi�; (1)

where Uds, Ubs or Ubd 6= 0 would signal new physics and the presence of
FCNC at tree level.

In the following, we analyze the e�ects of these new couplings in FCNC
processes and we update the phenomenological bounds on them. More specif-
ically, in processes changing avor in one unit, �F = 1, that in the SM go
through electroweak penguin diagrams of order GF �V

�
tiVtj , we simply con-

sider the dominant tree level FCNC contributions, order GFUij. Similarly
in �F = 2 processes mediated by boxes in the SM of order GF � (V �

tiVtj)
2

we include two di�erent additional contributions, a pure tree level diagram
with two FCNC vertices, order GFU

2
ij and a mixed SM vertex contribution

with a tree level vertex, roughly order GF � V
�
tiVtj Uij [12]. Other new phy-

sics contributions in this framework will always be suppressed by additional
loop factors or higher powers of the FCNC couplings with respect to the
contributions considered here[13]. Therefore the e�ective low energy theory
we consider is then identical to the SM with a non-unitary CKM matrix and
the presence of tree level FCNC as shown in Eq. (1).
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3 Experimental constraints on the extended

mixing matrix

As we have seen in the previous section, all the new physics e�ects in our
model are encoded in the extended mixing matrix that gives rise to tree level
FCNC in the Z and H vertices. The minimal extension from the SM would
consist in the addition of a single vector-like down quark. In this situation
the mixing matrix can be parametrized as [14],

V = R34 (�34; 0)R24 (�24; �3)R14 (�14; �2)V
SM
CKM (�12; �13; �23; �1) ; (2)

where V SM
CKM (�12; �13; �23; �1) is 4 � 4 block diagonal matrix composed of

the standard CKM [15, 16] and a 1 � 1 identity in the (4; 4) element, and
Rij (�ij; �k) is a complex rotation between the i and j \families". Note that,
in the limit of small new angles, we follow the usual phase conventions.
In fact, this 4 � 4 mixing matrix can represent a good approximation to
more complete models with several vector-like generations if the mixings are
hierarchical, similarly to the standard CKM matrix.

On the other hand, given that the deviations from unitarity of the CKM
mixing matrix are experimentally known to be small, it is possible to use
an approximate parametrization of the mixing matrix valid for an arbitrary
number of vector-like quarks [9]. This is an extension of the usual Wolfenstein
parametrization of the CKM [17] in terms of,

Vus = � Udd =
P
i=u;c;t jVidj2 = 1 �D2

d Usd =
X

i=u;c;t

V �
isVid

Vcb = A�2 Uss =
P
i=u;c;t jVisj2 = 1�D2

s Ubs =
X

i=u;c;t

V �
ibVis

Vub = A��3ei� Ubb =
P
i=u;c;t jVibj2 = 1�D2

b Ubd =
X

i=u;c;t

V �
ibVid (3)

with (Usd; Ubd; Ubs) general complex numbers and D2
j =

Pn+4
i=4 jVij j2 positive

real numbers. It is possible to obtain the remaining elements of the 3 � 3
submatrix corresponding to the SM mixing matrix as a function of (�, A, �,
�, D2

d, D
2
s , D

2
b , Usd, Ubd, Ubs). In fact, taking into account that (D

2
d, D

2
s , D

2
b )

can be at most of order �3 and (Usd, Ubd, Ubs) are experimentally constrained
to be � O(�4), we can keep quadratic or linear terms in (D2

d, D
2
s , D

2
b ) and
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(Usd, Ubd, Ubs) respectively and we obtain to O(�6),

Vud = 1� �2

2
� �4

8
� 1 + 8A2�2

16
�6 � D2

d

2
+
D2
d � 2D2

s

4
�2 �

D4
d

8
+ �RefUsdg+O(�7)

Vcs = 1� �2

2
� 1 + 4A2

8
�4 +

1 � 4A2 + 16A2� cos �

16
�6 �

D2
s

2
� D2

s

4
�2 +A�2RefUbsg � D4

s

8
+O(�7)

Vtb = 1� A2

2
�4 � A2�2

2
�6 � D2

b

2
� D4

s

8
+O(�7)

Vcd = ��+
 
A2

2
�A2�e�i�

!
�5 +

D2
d �D2

s

2
� + Usd + 

UbdA� U�
sd

2

!
�2 +O(�7)

Vtd = A(1� �e�i�)�3 +
A

2
�e�i��5 +

A

2
D2
s�

3 + Ubd +

A

2

�
D2
b �D2

d

� �
1 � �e�i�

�
�3 �A�2Usd +O(�7)

Vts = �A�2 +
�
A

2
�A�e�i�

�
�4 + Ubs +

A

2

�
D2
s �D2

b

�
�2 +

A

8
�6 +O(�7) (4)

This is a completely general parametrization of the 3 � 3 submatrix of a
complete (3 + n) � (3 + n) unitary matrix1. Hence, it includes also the
simplest case of a single vector-like quark. In this last case, there are several
relations among the 13 parameters of this general matrix and only the nine
independent parameters of a unitary 4� 4 mixing matrix remain. In fact we
have,

D2
d = jV4dj2; D2

s = jV4sj2; D2
b = jV4bj2;

Usd = �V �
4sV4d; Ubs = �V �

4bV4s; Ubd = �V �
4bV4d: (5)

1Notice that this parametrization is approximate to O(�6) but an exact solution can
be obtained numerically [9]
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Hence, we have 4 relations among the parameters in Eq. (3),

jUsdj2 = D2
sD

2
d jUbsj2 = D2

bD
2
s

jUbdj2 = D2
bD

2
d UsdUbsU

�
bd = D2

bD
2
sD

2
d: (6)

In the general case these equalities are replaced by inequalities,

jUsdj2 � D2
sD

2
d jUbsj2 � D2

bD
2
s

jUbdj2 � D2
bD

2
d (7)

Naturally, the elements of the extended mixing matrix corresponding
to CKM elements are experimentally measured in low energy experiments.
Some of these measurements are obtained from tree-level processes, therefore
not a�ected by new physics to a high degree of approximation. Hence they
constrain directly the corresponding elements of our extended mixing matrix.
Speci�cally, we have [16, 18], at 95% C.L.,

� 0:2150 < jVusj = � < 0:2242,

� 0:0364 < jVcbj = A�2 < 0:0440,

� 0:074 < jVub=Vcbj = �� < 0:106,

� 0:9719 < jVudj < 0:9751,

� 0:192 < jVcdj < 0:256,

� 0:948 < jVcsj < 1:0.

These constraints restrict the di�erent parameters in Eq. (4), and so from
the bounds on jVudj and jVcsj, we obtain D2

d � 5:5�10�3 and D2
s � 5:6�10�2

respectively. Another constraint [8, 9, 19] comes from the SU(2)L coupling
of the Z0 to bb. In the SM, this coupling is (V y

CKM � VCKM )bb = 1, but in this
model it is modi�ed to Ubb; hence, we have [19] D2

b � 9 � 10�3.
Notice that, in the general case, the D2

i parameters are completely inde-
pendent from the FCNC couplings U��. However, in a more de�nite model,
as for instance the single vector-like quark model, due to the unitarity of the
4� 4 matrix, these constraints have a strong impact on all other elements of
the extended mixing matrix and consequently also on the tree level FCNC
couplings, as shown in Eq. (6). In any case, even with these restrictions,
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the FCNC couplings can have large e�ects on rare processes, where the SM
contributes at the 1 loop level and new physics is allowed to compete on
equal footing. In fact, most of the experimental results are well accommo-
dated within a pure 3 generations SM and hence these measurements provide
additional constraints on the FCNC couplings. In other observables, like B0

CP asymmetries or B rare decays, the experimental results may still di�er
from the SM prediction once the experimental accuracy is increased in the
near future. Therefore, we analyze these observables from a slightly di�erent
point of view, and in the last section we show what are the possible deviations
from the SM consistent with the constraints discussed here.

In the �rst place we analyze the constraints associated with kaon physics
and then the constraints we get from the B system.

3.1 Kaon physics constraints

Rare kaon decays and CP violating observables in the kaon sector can re-
ceive important contributions from the FCNC coupling Usd. In fact, this
new coupling is constrained mainly by the decay (KL ! �+��)SD and the
experimental value of "0=". Other observables constraining this coupling are
K+ ! �+��� and "K [20].

The decay KL ! �+�� is CP conserving and in addition to its short dis-
tance part, given by Z penguins and box diagrams, receives important contri-
butions from the two photon intermediate state which are diÆcult to calcu-
late reliably. Unfortunately, the separation of the short-distance part (similar
to K+ ! �+���, free of hadronic uncertainties) from the long-distance piece
in the measured rate is rather diÆcult. Therefore, the full branching ratio
is generally written as a sum of a dispersive and absorptive contributions, of
which the latter can be calculated using the data for KL ! . The disper-
sive contribution can be decomposed as a long distance and a short distance
part. Following [20, 21], we can write down,

Br (KL ! ��)SD = 6:32 � 10�3 [CU2Z Re (Usd)

+ ��c + Y0 (xt) Re
�
�sdt
�i2 � 2:8� 10�9; (8)

where CU2Z = �(p2GFM
2
W =�

2)�1 ' �92:7, �abi = V �
iaVib, ��c = �6:54�10�5

is the charm quark contribution and Y0 is the Inami-Lim [22] function as
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de�ned in [23]. Experimentally, we must require this branching ratio to be
BR(KL ! �+��)SD � 2:8� 10�9 [21].

A second observable constraining Usd is "0=". Within the SM there is
a cancellation between QCD and electroweak penguin contributions (domi-
nated by Z penguins) which suppresses this ratio. When new physics enters
into the game and if, as it is expected on general grounds, it does not af-
fect considerably the QCD contributions but does so with the Z penguins,
the abovementioned cancellation does not take place and signi�cant devia-
tions from the SM results (or strong bounds on the new parameters) can be
expected. We now decompose "0=" as follows,

"0
" = �U CU2Z Im(Usd) + �t Im

�
�sdt
�

�U = [1:2 � Rs rZ B
(3=2)
8 ]

�t = �U � C0 � 2:3 + Rs [1:1 rZ B
(1=2)
6 +

(1:0 + 0:12 rZ) B
(3=2)
8 ]: (9)

where the �rst term comes from the Z piece and the other one contains all
the remaining ones [20]. It is worth noting that unlike previous observables,
here the theoretical errors overwhelm the experimental precision. The main
sources of uncertainties lie in the parameters, B(1=2)

6 and B(3=2)
8 . The impor-

tance of these uncertainties is somehow increased because of the cancellation
we have mentioned.

Here, we take Rs = 1:5 � 0:5, rZ = 7:5 � 1 and B
(3=2)
8 = 0:8 � 0:2 [20].

The value of B
(1=2)
6 has caused some controversy in the literature because

of the di�erent values obtained in di�erent schemes. We take two di�erent
values in order to illustrate the situation where new physics in the s{d sector
is needed or not needed to reproduce the experimental value of "0=". For set

I, we use B(1=2)
6 = 1:0 � 0:2 with the other parameters as given above, as

in Refs. [20, 24, 25] which comes from large Nc calculations [26] and lattice
analysis, and this tends to favor the presence of new physics in Uds. In
set II, we use B

(1=2)
6 = 1:3 � 0:5 in order to incorporate the predictions of

Refs. [27, 28], where inclusion of the correction from �nal-state interactions in
a chiral perturbation theory analysis tends to favor the SM range. Still, there
are other schemes where di�erent values for B(1=2)

6 and B
(3=2)
8 are obtained

[29, 30, 31]. In fact, we have explicitly checked that with the values in [29],

B
(1=2)
6 = 2:5 � 0:4 and B

(3=2)
8 = 1:35 � 0:20, the constraints on the FCNC
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couplings U�� are still consistent with the results presented below.
Numerically, we have for the central values

"0
" = �7:8 CU2Z Im(Usd) +

(
6:2
9:9

Im
�
�sdt
�

(10)

with the parameters in set I and set II respectively and we calculate its errors
with a Gaussian method. This observable has to reproduce the experimen-
tally obtained value of ("0=")exp = (2:12 � 0:46) � 10�3.

A theoretically cleaner constraint [32], although less restrictive than the
previous two constraints is provided by BR(K+ ! �+���),

BR(K+ ! �+���) = 1:55 � 10�4
"�
CU2ZImfUsdg+X0(xt) � Im�sdt

�2
(11)

+
�
CU2ZRefUsdg � 2:11 � 10�4 +X0(xt)Re�

sd
t

�2#
;

with X0(xt) = C0(xt)� 4B0(xt) a gauge invariant loop function combination
of boxes and vertices [22, 23]. This decay has already been measured in the
experiment E787 at BNL [33], however, so far, a single event has been found
and this is not enough to provide a de�nite value for the branching ratio.
Hence we take here only the upper limit at 95% C.L. BR(K+ ! �+���) �
8:3� 10�10 2.

Finally, we include also "K, whose leading-order expression is [23, 12]:

"K =
ei�=4GFBKF

2
KmK

6�mK
Im

�
��tt (Usd)2 + �

4� sin2 �W"
8

tP
i=c

�tiY0 (xi) �sdi Usd �
tP

i;j=c
�ijS0(xi; xj) �sdi �

sd
j

#)
(12)

where S0 is another Inami-Lim function [23] and the QCD correction factors
(which take into account short distance QCD e�ects) are given as follows,

�cc = 1:38� 0; 20; �tt = 0:57 � 0:01 �tc = 0:47 � 0:04 (13)

Here, contrary to Ref. [20], the coeÆcient Y0 (x) of the linear term in Uds is
characteristic of the present model, therefore, in principle, the irrelevance of
"K to constraint Uds is not fully guaranteed.

2In Ref. [11], the old value of this BR at 1 � was used, therefore both a lower and an
upper limit were considered
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Figure 1: E�ect of the constraints from "K, K+ ! �+���, KL ! �+�� and
"0=" on the Usd FCNC coupling.

At this point, it is important to emphasize that Eqs. (8), (9), (11) and
(12) are completely valid in the general model with n additional VLdQs.

In Fig. 1 we present the e�ects of the di�erent constraints in the Usd
coupling. As we can see in this �gure, the most eÆcient constraints are
provided by KL ! �+��, that constrains Re(Usd), and "0=", that bounds
Im(Usd) to the rectangular box in the center. However, these constraints will
be diÆcult to improve due to the large hadronic uncertainties. Similarly,
the constraints from "K are very precise on the experimental side and the
precision of this limit on Usd is determined by the hadronic parameter BK =
0:85� 0:15 [23, 25]. Hence, it is not expected to improve largely in the near
future. On the other hand, the decay K+ ! �+��� is much cleaner from
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the theoretical point of view [32]. The experimental value for the branching
ratio, based in the single event found so far is,

BR(K+ ! �+���) = 1:5+3:4�1:2 � 10�10; (14)

which gives an upper bound of,

BR(K+ ! �+���) � 8:3� 10�10 at 95% CL: (15)

Unfortunately, it is clear from the errors that we cannot obtain a lower bound
on this BR at 80% CL, still we have included in the �gure a dashed circle
showing the e�ect of a future lower limit which would correspond to a hy-
pothetical value of 8 � 10�11 and would exclude the region to the left of the
small rectangle. Moreover, it is interesting to notice that improving the up-
per bound to the level of 2� 10�10 would provide a bound on the same level
as the combined bounds from KL ! �+�� and "0=". In fact, these values
could be reached after the analysis of the stored data from E-787 and the
sensitivity of the new experiment E-949 [34] (already approved) will reach
10�11 in the next few years. Hence, this decay will provide the most stringent
and clean bounds on the Usd coupling in the near future, although at present
the bounds are still obtained from KL ! �+�� and "0=".

In Figs. 2 and 3, we present a scatter plot of the allowed values of Usd
in the general model with n additional vector-like down quarks, although we
must emphasize that this allowed region does not change at all even if we go
to the more restricted case of a single VLdQ. We impose all the constraints
described above, with the "0=" parameters from set I and set II in Fig. 2 and
3 respectively. In both approaches the bound for the real part is,

�1:3� 10�5 < RefUsdg < 4:0 � 10�6 (16)

This constraint is directly obtained from Eq. (8) with the limit values of
Re(�sdt ) which are Re(�sdt )max = �4:9� 10�4 and Re(�sdt )min = �2:1� 10�4

from Eq. (4) to O(�5) for � = �; 0 respectively. Therefore, this implies that
the additional correlations among the parameters in the 1{VLdQ model are
irrelevant for the Usd bound.

The constraints on the imaginary part of this coupling depend slightly
on the adopted value for B(1=2)

6 . For set I, with B(1=2)
6 = 1:0 � 0:2, we can

see that Usd is necessarily positive and does not reach the origin, indicating

11



Figure 2: Phenomenological bounds on the FCNC coupling Usd with the "0="
hadronic parameters in set I.
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Figure 3: Phenomenological bounds on the FCNC coupling Usd with the "0="
hadronic parameters from set II.
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marginally the need of new physics for "0=". The allowed range is 1:0 �
10�7 < ImfUdsg < 6:5 � 10�6. On the other hand, in set II, we get an
allowed area, �1:5 � 10�6 < ImfUdsg < 6:0 � 10�6, including the SM as
one of the possible points in agreement with the experimental results. This
bounds are directly obtained from Eq. (10) with Im(�sdt )max = 1:4 � 10�4

and Im(�sdt )min = 6 � 10�5 assuming a 50% error, which corresponds to the
Gaussian errors that we use in this constraint. In view of these two di�erent
options to calculate "0=", we take a conservative bound on Im(Usd) including
both possibilities,

�1:5� 10�6 < ImfUsdg < 6:5� 10�6 (17)

It is interesting to notice, that these bounds turn out to be much more strin-
gent than the direct bounds on FCNC couplings usually quoted in the litera-
ture for VLdQ models [35]. This improvement is mainly due to the inclusion
of the SM contributions that were completely neglected in the calculation
of "K in the bounds presented in [35], the improvement of the experimental
results in (KL ! �+��)SD, K+ ! �+���, and to the inclusion of the bound
from "0=". In this way, our bounds basically agree with the general bounds
in [20].

3.2 B physics constraints

In this section, we study the constraints on the Ubd and Ubs couplings from
B physics FCNC. In fact, the experimental information in the B system is
improving rapidly with the new results from B factories and so, it is impor-
tant to update the bounds on these FCNC couplings. In all the following
processes, the choice of set I or set II to calculate "0=" has no relevant e�ects
on the Ubd and Ubs couplings. Hence, we analyze the constraints making no
distinction on the hadronic parameters used to calculate "0=". In �rst place,
we concentrate on the constraints from CP conserving processes and then we
add the information from the B0 CP asymmetries. The main CP conserving
processes constraining Ubd and Ubs are BR(B ! Xd;sl

+l�) and �MBd;s
.

From the upper bound on BR(B ! Xsl
+l�) � 4:2 � 10�5 [36] and as-

suming BR(B ! Xdl
+l�) � BR(B ! Xsl

+l�) we have [23, 37],

�
�
B ! Xql

+l�
�

�
�
B ! Xce

+�e
� =

�2

�2 sin4 �W

���Y0 (xt)�bqt + CU2Z Ubq
���2

jVcbj2f (mc=mb)
�
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Figure 4: Constraints on the Ubd coupling fromBd{ �Bd mixing in the n{VLdQ
model (left) and in the 1{VLdQ model (right). The circle shows the bound
obtained from the B ! Xdl

+l�

�
2 sin4 �W � sin2 �W +

1

4

�
� 4� 10�4 (18)

with f(z) = (1� 8z2 + 8z6� z8� 24z4 log z) a phase space factor due to the
mass of the charm quark. From here we get,���Y0 (xt) �bqt + CU2Z Ubq

��� < 0:15: (19)

Replacing here �bdt ' A�3(1� �e�i�) +O(�5) ' 8 � 10�3 (1� 0:4e�i�) with
Y0 ' 1, it is clear that the �bdt contribution can be safely neglected and we
get a bound jUbdj � 1:7 � 10�3. However, this is not true in the case of
�bst ' �A�2 ' �0:040 that shifts the jUbsj constraint to a circle of radius
1:7� 10�3 centered in (�0:040=92:7; 0).

Additionally, from B{ �B mixing we have [10, 11, 12]

M
Bq

12 =
G2
FM

2
W�BqBBqf

2
Bq
mBq

12�2
S0 (xt) �

bq
t

2
�bq;

�bq = 1 � 3:3
Ubq
�bqt

+ 165

 
Ubq
�bqt

!2

; (20)
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Figure 5: Constraints on the Ubs coupling from B ! Xsl
+l� in the n{VLdQ

model (left) and in the 1{VLdQ model (right).

where the new parameters are de�ned in Ref. [23], and the mass di�erence

�MBq = 2 jMBq

12 j. The experimental values for these observables are �MBd
=

(0:472 � 0:017)� 1012 s�1 and �MBs > 14:9� 1012 s�1 at 95% C.L. [38, 39].
At this point, it is important to compare the bounds that can be ob-

tained from the mass di�erence and the semileptonic decay. From BR(B !
Xd;sl

+l�), we get a bound on j�bqt Y0 + CU2ZUbqj2 in Eq. (19), while from the
mass di�erence, neglecting the linear term, we obtain a constraint on the com-
bination j(�bqt )2S0+4CU2ZU2

bqj. Hence, it is clear that the relative size of the
tree level FCNC with respect to the SM contribution is always bigger in the
semileptonic decay due to the presence of an additional factor CU2Z ' �92:7.
Nevertheless, the experimental constraints from BR(B ! Xd;sl

+l�) are still
much larger than the typical SM prediction while the �MBd

measurement
is already saturated by the SM contribution. This implies that the �MBd

constraint is more e�ective in the case of Ubd and both experiments give rise
to constraints of the same order of magnitude, dominating at the end the
�MBd

bound. This can be seen in Fig. 4, where we show the allowed region
of the parameter space both in the general model with an arbitrary number
of VLdQs and in the minimal model with a single VLdQ. In these �gures,
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the constraint from BR(B ! Xdl
+l�) is shown as a circle slightly shifted

from the origin and a radius of 1:7 � 10�3. However, as we can see here,
the bounds on Ubd are jRefUbdgj � 0:7 � 10�3 and jImfUbdgj � 1:2 � 10�3,
which are directly obtained from the �MBd

constraint as the envelope of the
curves j(�bdt )2S0 + 4CU2ZU2

bdj with all the allowed values of �bdt . Notice that
already in this most constrained model, i.e. the model with a single VLdQ,
the Ubd coupling is only bounded by these processes and therefore we obtain
the same bounds both in this case and in the general case with n VLdQ.

In the case of the Ubs coupling the situation is completely di�erent. In
�rst place �MBs has not been measured yet, and so only a lower bound on
the mass di�erence is available which is not useful to set a constraint on Ubs.
Moreover, it is easy to see from Eq. (20) that for similar values of Ubd and Ubs,
the FCNC e�ects on �MBs will be suppressed by a factor (�bdt =�

bs
t )

2 ' �2

when compared with the e�ects on �MBd
. This implies that in this model

we cannot expect to observe the FCNC e�ects in Bs{ �Bs mixing 3. Hence,
this coupling is only constrained by the upper bound on BR(B ! Xsl

+l�).
In Fig. 5, we show the constraint from BR(B ! Xsl

+l�) as a circle slightly
shifted from the origin, that implies an upper bound of jUbsj � 2 � 10�3

[37, 41] both in the general model with n VLdQs and in the model with a
single VLdQ. Similarly, the b ! s branching ratio provides constraints of
the same order of magnitude [42].

Despite these strong constraints from CP conserving processes, the CP
asymmetries in B decays are still very e�ective to constrain the Ubd coupling
[43, 44]. Recently, the arrival of the �rst measurements of the B ! J= KS

CP asymmetry, aJ= , from the B factories has caused a great excitement in
the high energy physics community.

aJ= =

8><
>:

0:34 � 0:20 � 0:05 (BaBar [45])
0:58+0:32+0:09�0:34�0:10 (Belle [46])
0:79+0:41�0:44 (CDF [47])

(21)

These values correspond to a world average of aJ= = 0:51 � 0:18, that can
be compared with the SM expectations of 0:59 � aSMJ= = sin(2�) � 0:82
with � = arg(�VcdV �

cb=(VtdV
�
tb)). The errors are still too large to draw any

�rm conclusion. In fact, if we take the world average at 95% C.L. we do

3This is not always true in the presence of an up vector-like quark, as can be seen in
Ref. [40]
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Figure 6: Allowed region for the Ubd coupling requiring a value of aJ= asym-
metry to reproduce the world average at 1 � in the n{VLdQ model (left) and
1{VLdQ model (right).

not get any improvement over the constraints from CP conserving processes.
However, anticipating the improvement of the experimental errors from B
factories, we take the world average at 1 � level to see the e�ects on the Ubd
coupling. From Eq. (20), it is straightforward to obtain aJ= as,

aJ= = sin (2� � arg(�bd)) : (22)

Using the world average at 1 � as the experimentally allowed range, we show
in Fig. 6 the resulting region for the Ubd coupling. As we can see here,
the Ubd allowed region is sizeably modi�ed from this constraint. The outer
regions in the second and fourth quadrants are reduced while the central
region corresponding to the SM remains �lled; this situation represents an
improvement over the analysis presented in Ref. [44]. Note that the results
are essentially similar for the n{VLdQ and the 1{VLdQ cases. As we can see
here, with the world average for the aJ= CP asymmetry there is no need of
new physics in the Ubd sector.
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4 Discovery potential in B factories

As we have explained above, the present results in the aJ= asymmetry in
Eq. (21) are not precise enough to make a de�nitive statement about the
presence/absence of large new physics contributions in B decays. Still, these
measurements, and especially the BaBar value which is the most precise one,
leave room for an asymmetry considerably smaller than the standard model
expectations. The SM range is certainly outside the 1� BaBar range but not
outside the world average. This potential discrepancy is at the origin of sev-
eral papers [48, 49] studying the implications of a small aJ= in the search of
new physics. The papers in Ref. [48] provide general parametrizations of new
physics contributions to B mixing and decays. They essentially show that
this possible mismatch among the measured value and the SM expectations
may be due to the presence of new physics either directly in B physics or
in K physics modifying indirectly the unitarity triangle �t. However, these
papers do not provide a de�nite new physics example ful�lling this task. On
the other hand, the two papers in Ref. [49] analyze SUSY models, where
no sizeable e�ects in B mixing and decays are generally expected and the
unitarity triangle �t can be modi�ed only through new SUSY contributions
to K physics. In the following, we show that a model with tree level FCNC
from the mixing with vector-like quarks would be a natural candidate for a
model with clear deviations from the SM expectations in CP asymmetries,
satisfying simultaneously all other experimental constraints.

From the expression of aJ= in Eqs.(20) and (22), with j�bdt j 2 [5 �
10�3; 1:2�10�2] and jUbdj <� 10�3, it is clear that arg(�bd) can be very large.
Indeed, in the general model with an arbitrary number of VLdQ, there is
no further inuence on Ubd from constraints on other elements of the mixing
matrix. In fact, only the inequalities in Eq. (7) can restrict this coupling,
however, given the bounds on D2

i , they are almost inoperative in this case.
Hence, all the points inside the allowed contour in Fig.4 are equally probable
and any value of the asymmetry is possible with a comparable probability.
Still, the especial geometry of this allowed region and the preferred orien-
tation of �tbd slightly favors the SM range over other values. Furthermore,
even in a more constrained model, as in the model with a single VLdQ large
departures from the SM range are possible. The expected values for the
asymmetry both in the n VLdQs and in the 1 VLdQ model are shown in
Fig. 7 as an histogram of the distribution of 95000 events satisfying all the
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Figure 7: Distribution of the values of aJ= for 95000 events in the n{VLdQ
(left) and in the 1{VLdQ (right).
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Figure 8: Correlation between the values of aJ= and jUbdj in the model with
a single VLdQ.

constraints in the previous sections. As expected from the above discussion,
in the general case all possible values of the asymmetry have similar proba-
bility. On the other hand, in the model with a single VLdQ, this distribution
is clearly peaked on the SM range. Moderate deviations are rather frequent
and larger departures are more rare but still possible for any value of the
asymmetry.

In Figs. 8 and 9, we show, in the 1 VLdQ model the correlation of the
possible values of the asymmetry with jUbdj and jUbsj respectively. Here,
we see that the range 0:55 <� aJ= <� 0:85 corresponding to the SM expected
range concentrates most of the events and can be reproduced with jUbdj = 0
and any allowed value of jUbsj. However, for di�erent values of the asymmetry
there is a clear correlation between aJ= and the minimum value of jUbdj
required to obtain this asymmetry. For instance to obtain an asymmetry
below 0:5, a jUbdj � 2 � 10�4 is needed. This required minimum is also
true in the general model with an arbitrary number of VLdQs. Similarly,
we see in Fig. 9 that these large values of Ubd correspond to low values of
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Figure 9: Correlation between the values of aJ= and jUbsj in the model with
a single VLdQ.
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Figure 10: Allowed region for the Ubd coupling consistent with the BaBar
result for the aJ= asymmetry at 1 � in the n{VLdQ (left) and in the 1{VLdQ
(right).

Ubs [11], however it is important to emphasize that this correlation is only
true in the minimal model, but not in a model with an arbitrary number of
VLdQs. To see this we show in Figs. 10 and 11 both in the n{VLdQ and in
the 1{VLdQ models an scatter plot of Re(Ubd) versus Im(Ubd) and Re(Ubs)
versus Im(Ubs) for an asymmetry corresponding to the BaBar result at 1�,
0:14 � aJ= � 0:54 [45]. In this Fig. 10 we see that the great majority of
the allowed points are in the range 1�10�4 (2�10�4) <� jUbdj <� 1:2�10�3,
in the n-VLdQ (1{VLdQ) model, i.e. a large, non-vanishing Ubd coupling is
required to reproduce the BaBar asymmetry. In particular, this means that,
within this model, a low CP asymmetry implies the presence of new physics
in b{d transitions. This conclusion would be unchanged in the general model.
On the other hand, we see that, for these points, in the 1-VLdQ model, the
coupling Ubs is always restricted to the range jUbsj <� 3� 10�4; hence all the
allowed points have simultaneously high jUbdj and low jUbsj. Indeed, it is easy
to obtain in the 1{VLdQ model, from Eq. (5), the relation UbdU�

bs = �UsdD2
b .

The region in the Uds plane does not change with the inclusion of the aJ= 
constraint, and then we still have, jUsdj <� 6� 10�6 and D2

b
<� 0:009. Taking
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Figure 11: Allowed region for the Ubs coupling consistent with the BaBar
result for the aJ= asymmetry at 1 � in the n{VLdQ (left) and in the 1{VLdQ
(right).

into account that a low aJ= requires jUbdj � 2� 10�4, this clearly implies an
absolute upper bound, jUbsj <� 3� 10�4. Therefore, for this set of points, we
can not expect a new-physics contribution in the b! s transition. However,
this relation is not valid in the n{VLdQ model and therefore this correlation
is lost as can be seen in Fig.11.

Also in Fig. 10, we �nd a few points (' 0:1% of the points) which have
simultaneously jUbsj >� 1 � 10�3 and jUbdj <� 3 � 10�5. This second class of
points is only possible in the vicinity of the SM and they disappear if the
value of the asymmetry is reduced to aJ= <� 0:52 4.

Therefore, we can conclude that in a model with a single VLdQ a low
CP asymmetry aJ= � 0:52 implies jUbdj � 2 � 10�4 and simultaneously
jUbsj � 3 � 10�4. On the contrary, in a general model with an arbitrary
number of VLdQs, we still have jUbdj � 2 � 10�4, but this has no inuence
on the Ubs coupling, and it is only constrained by the B ! Xsl�l branching

4Still, it is important to emphasize that these points also require the presence of new
physics in B decays.
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ratio.
At this point, it is very interesting to examine the predicted branching

ratios of the decays B ! Xd;sl�l for this set of points. From Fig. 10, where
we have included the circle corresponding to the experimental bounds in
these decays, it is clear that we can also expect a very large contribution
to B ! Xdl�l. In this case, the branching ratios for the Xd decays are
strongly enhanced from the SM prediction, reaching values of 1:0 � 10�6 �
BR (B ! Xdl

+l�) � 1:8 � 10�5 and 6:0 � 10�5 � BR (B ! Xd���) � 1:0 �
10�4. While, on the other hand, the low values of Ubs imply that the Xs

decays remain roughly at the SM value. Conversely, in the points with small
Ubd and large Ubs, there is no sizeable departure from the SM expectations in
B ! Xdl�l and the Xs decays are now close to the experimental upper range.
Namely, we obtain, for the points to the right of Fig. 11, with Re (Ubs) ' 1�
10�4, BR (B ! Xsl

+l�) ' 2:7� 10�5 to be compared with the experimental
upper bounds of BR (B ! Xsl

+l�) � 4:2 � 10�5. However, this possibility
is only marginal in the 1� BaBar range for the minimal model with a single
VLdQ. In any case in the general model, the possibility of large Ubs couplings
is again open. For analysis of the phenomenological e�ects of this coupling in
radiative b! s decays, Bs{ �Bs mixing and rare decays in a slightly di�erent
context, see Refs. [40, 41, 42].

5 Conclusions

In this work, we have updated the constraints on tree level FCNC couplings
in the framework of a theory with n isosinglet vector-like down quarks. The
inclusion of the constraints from (KL ! �+��)SD, "0=", "K andK ! ���� has
allowed to improve sizeably the bound on the Usd coupling. The precise range
of allowed values for this coupling depends strongly on the hadronic input in
the calculation of "0=". Our summary in Table 1 includes the main theoretical
approaches [20, 24, 25, 26, 27, 28, 29, 30, 31]. In the near future, K+ !
�+��� will be quite useful to further constrain Usd without large theoretical
uncertainties.

We have calculated the constraints on Ubd and Ubs from�MBd
, B ! Xs;dl�l

and the B ! J= KS CP asymmetry. In Table 1, we summarize our results
on these bounds without the additional constraint from theB ! J= KS CP .
Note that all these bounds on Ubq are independent of the hadronic inputs in
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Re fUsdg � �1:3� 10�5 � 4:0 � 10�6

Im fUsdg � �1:5� 10�6 � 6:5 � 10�6

jRefUbdgj � 7 � 10�4

jImfUbdgj � 1:2 � 10�3

jUbsj � 2 � 10�3

Table 1: Constraints on the tree level FCNC couplings from rare processes
in the K and B systems.

"0=". In addition, we have shown that the B ! J= KS CP asymmetry is
especially sensitive to the presence of a Ubd FCNC coupling. In this regard,
we have shown that the 1 � value of the world average is already able to
exclude half of the allowed region for the Ubd coupling. However, due to
the still large experimental errors this constraint has a small e�ect at 95%
C.L. Assuming a low value of the aJ= asymmetry below � 0:52 (following
BaBar range at 1 �) we have shown that, in models with n VLdQs, tree-level
FCNC in the b{d sector are mandatory. The FCNC coupling Ubd is required
to be greater than 1 � 10�4, rising to 2 � 10�4 in the 1{VLdQ model. The
Ubs coupling in the general model is bounded by 2 � 10�3, although for the
1{VLdQ model the bound goes down to 3 � 10�4.

Therefore, a clear favorable scenario for these models would be to �nd
simultaneously a low aJ= (below � 0:5) and a large BR(Bd ! Xdl�l), at least
one order of magnitude bigger than the SM expectations. Values of BR(Bd !
Xsl�l) close to the present experimental bounds are still possible in the n{
VLdQ model. Nevertheless, in the 1{VLdQ model these BR are expected to
be similar to the SM values. In summary, this aJ= CP asymmetry, together
with the rare decays B ! Xs;dl�l and K ! ���� are the best options to
further constraint the FCNC tree level couplings or to discover the presence of
vector-like quarks in the low energy spectrum as suggested by GUT theories
or models of large extra dimensions at the TeV scale.
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